Austrian Quantum Fiber Network


Project Abstract

AQUnet will establish an Austria-wide glass fiber network for the distribution of quantum information and quantum metrology signals. The existing data backbone infrastructure, operated by ACOnet (Austrian Academic Computer Network), will be upgraded and extended to enable safe and stable transport of quantum signals. Within AQUnet, we will connect a series of locations of the consortium in Vienna and Innsbruck, as well as external users. We will furthermore connect to partnering European initiatives like e.g. REFIMEVE+ (France), PTB-LMU (Germany), ISI-Brno (Czech Republic).

AQUnet will enable ACOnet (with support by project partners and the scientific community) to extend the existing data infrastructure to quantum signals: where possible, “classical” glass fiber channels will be upgraded used for simultaneous quantum transport, existing dark fibers will be made accessible, new channels established. The notoriously fragile quantum signals will require specific amplification stages (especially along Innsbruck-Vienna). A central node for the star-shaped distribution of an ultrastable optical reference signal (linked to the Austrian primary atomic clock at the federal office for calibration and surveying BEV) will be established.

1. Quantum-communication: demonstrate tap-proof data transfer over long distance (Innsbruck-Vienna) and in a dense urban environment (multiple sites in Vienna), develop industry-standard quantum coder and repeaters, learn how to piggyback quantum information on an existing classical data backbone.

2. Quantum Metrology: As any precision measurement is a frequency measurement, we will distribute a high-accuracy optical reference signal at 1542 nm (compatible with other European initiatives), back-referenced to the primary Caesium atomic clock at BEV, emitted to all end users from a central hub.

3. Clock-based Geodesy: Comparing optical atomic clocks or ultrastable optical oscillators at different locations (connected through AQUnet) allows to monitor relative height and distance variations with unprecedented absolute precision, opening up a plethora of investigations on the earth’s interior dynamics to earthquake warning systems