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1Faculty of Physics, University of Vienna, Boltzmanngasse 5, A-1090 Vienna, Austria
2LIGO Laboratory, Massachusetts Institute of Technology, Cambridge, MA 02139, USA

3Erwin Schrödinger Institute and Faculty of Physics, University of Vienna, A-1090 Vienna, Austria
(Dated: December 13, 2016)

The effect of the Earth’s gravitational potential on a quantum wave function has only been
observed for massive particles. In this paper we present a scheme to measure a gravitationally
induced phase shift on a single photon travelling in a coherent superposition along different paths of
an optical fiber interferometer. To create a measurable signal for the interaction between the static
gravitational potential and the wave function of the photon, we propose a variant of a conventional
Mach-Zehnder interferometer. We show that the predicted relative phase difference of 10−5 radians
is measurable even in the presence of fiber noise, provided additional stabilization techniques are
implemented for each arm of a large-scale fiber interferometer. Effects arising from the rotation of
the Earth and the material properties of the fibers are analysed. We conclude that optical fiber
interferometry is a feasible way to measure the gravitationally induced phase shift on a single-photon
wave function, and thus provides a means to corroborate the equivalence of the energy of the photon
and its effective gravitational mass.

I. INTRODUCTION

Interferometry has proven to be an effective tool for
high-sensitivity measurements in physics. For example,
the recent groundbreaking detection of gravitational
waves [1] relied on Michelson interferometers to measure
ripples in the curvature of space-time predicted 100
years ago by the theory of General Relativity (GR). This
achievement indicates that state-of-the-art technology
enables the realization of interferometers capable of
detecting gravitational effects even on quantum par-
ticles. While there exists a well developed framework
incorporating general relativistic gravity into quantum
physics —quantum field theory on curved space-time
[2]—its most distinctive predictions, such as Hawking
radiation from black holes, are nowhere close to be
testable in the near future. Various experiments have
been proposed to test its other predictions, e.g. general
relativistic corrections to the Newtonian gravitational
phase shift for massive particles [3, 4]. Yet, the size of the
interferometric setups that are necessary to observe these
corrections is still beyond the reach of the present-day
technological capabilities. Rapidly advancing quantum
optics technology allows for quantum states of light to
be transmitted over increasingly large distances, which
sparked proposals for experiments probing the effects
of the space-time curvature on photons [5]. As a first
important step towards this goal, we propose an exper-
imental scheme for observing the gravitational phase
shift on a single photon. We discuss the gravitational
effects on the single-photon state inside a Mach-Zehnder
interferometer (MZI), which is placed vertically inside
the Earth’s gravitational field. We show that the use of
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optical fibers together with a modification of the classic
Mach-Zehnder scheme allows to obtain a detectable
signal, even in the presence of noise.

The first experiment testing the influence of a grav-
itational potential at a quantum level was performed
by Colella, Overhauser and Werner using neutrons in
a matter-wave interferometer [6]. Subsequent measure-
ments of the gravitational acceleration g have also relied
on atoms and molecules [7]. However, because these
experiments all used massive particles, they can be
interpreted within the framework of Newtonian gravity;
on the other hand, gravitational tests with massless
particles, e.g. measurement of the Shapiro delay [8],
require a general relativistic explanation [9]. In order
to detect GR effects on single photons, a MZI with
arms located at different heights above the Earth can be
used [9, 10]. The time of emission of the photon serves
as a ‘clock’, keeping track of the evolved proper time
along each path of the interferometer [9]. By reading
the state of the clock we gain information about the
path taken by the photon inside the MZI, which should
lead to a drop in visibility according to the quantum
complementarity principle [11, 12]. We therefore expect
the visibility to start decreasing once the relative GR
proper time difference between the arms approaches the
photon coherence time (the precision of the clock). The
observation of such a drop in visibility would constitute
a genuine test of the interplay between GR and quantum
mechanics. Unfortunately, interferometers with arm
lengths of a few thousand kilometers would be required
for such an experiment. Such large-scale interferometers
are currently only feasible for space-based experiments
[13]. However, a smaller interferometer still allows for
measuring gravitationally induced phase shifts as we
discuss in this work. A successful demonstration of this
phase shift would constitute e.g. a verification of the
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FIG. 1. Schematic of a conventional Mach-Zehnder interfer-
ometer of area A = lh placed vertically inside Earth’s gravi-
tational field. A beam splitter (BS) transforms a single pho-
ton into a coherent superposition between the two possible
arms. The wave function evolves along two different paths
and arrives at the merging beam splitter at the same time
but slightly shifted in phase due to the presence of a gravita-
tional potential.

equivalence between the energy of a single photon and
its effective gravitational mass [10].

A conventional MZI, with arms of length l separated
in height by a distance h, placed vertically inside Earth’s
gravitational field is illustrated in Fig. 1. The relation
between the enclosed area A = lh and gravitational phase
difference is approximately given by [10]

∆φg ≈
2πANg

λc2
, (1)

where N is the group effective index of the transmissive
medium for light propagation, g is the gravitational ac-
celeration, λ is the central wavelength used to excite the
interferometer and c is the speed of light in vacuum. The
gravitational phase shift can be interpreted to be a re-
sult of the coupling of the average energy of a photon
with effective mass m = hν0

c2 = h
cλ to the Newtonian

gravitational potential [10]. If the coherence time of the
photon is much larger than the proper time difference
experienced between different paths the fringe visibility
is high and the detection probabilities at the two output
detectors are given by

P± =
1

2

(
1± cos(∆φg + φ(t))

)
, (2)

where φ(t) denotes the time varying phase-noise contri-
butions present in any real interferometric setup.

The required interferometric area for a given wave-
length depends on the phase difference as given by Eq.
(1). Due to the small effective mass of the photons, the
required area of the interferometric set-up is much larger
than the area needed for matter-wave interferometry
[6, 10]. For photons in the optical regime (λ0 ∼ 10−6

m), an area of about 105 m2 leads to a phase shift

on the order of ∆φG ∼ 10−5 rad. In order to achieve
such large-area interferometers, optical fibers are ideally
suited for compact arrangements even at the table-top
scale. Remarkably, commercially available fiber spools
containing 100 km of fiber do not exceed 2 ∗ 10−2 m3 of
volume and 10 kg of weight which makes them suitable
for implementations in the laboratory despite the long
path lengths required.

II. MEASURING GRAVITATIONAL PHASE
SHIFTS FOR SINGLE PHOTONS

In a noise-free environment the measurement of the
gravitational phase shift would be straightforward. The
MZI could first be calibrated by orienting the setup hor-
izontally —such that the area (A) is parallel to the sur-
face of the Earth —to equalize the optical path lengths
of the arms; then, by orienting the interferometer ver-
tically (Fig. 2), we could determine the gravitational
phase by simply observing the difference in count rates
between the detectors. In reality, however, fiber interfer-
ometers can also be used as sensors for various physical
and chemical variables due to their high sensitivity for ex-
ternal perturbations [14]. This leads in our case to noise
induced signal fading [15, 16], which is a change in the
amplitude of the detected signal as a function of time.
It is therefore necessary to design an experiment capa-
ble of distinguishing the static gravitational signal from
time-dependent noise. Tanaka proposed a possible solu-
tion for an all-fiber MZI [17], where the arrangement can
be rotated about an axis parallel to its arms. The phase
difference between the two arms is angle-dependent and
can be measured for all intermediate angles between the
horizontal and vertical orientation of the interferometer.
Measurements are only taken when the angle between the
surface of the Earth and the area of the interferometer
is fixed. Due to the static nature of this rotation and
the impossibility of calibrating the interferometer for dif-
ferent angles without losing the desired information, this
scheme relies heavily on passive stabilization of the fibers.
For the proposed area of 5000 m2 phase-noise larger than
10−6 rad within the detection band must be suppressed.
Although such stability has been demonstrated in fiber
interferometers [18–20], achieving this precision for such
a large-scale interferometer is a challenge. In the scheme
we present here, we modulate the gravitational poten-
tial difference even when the interferometer is at a fixed
position during the measurements ( Fig. 2).

A. Setup

Our scheme consists of a rotatable 3-arm MZI (Fig.
2). Each of the three arms is made up of a fiber beam
splitter(FBS), a fiber phase shifter (FPS) and an optical
fiber of length l . The interferometer can be shielded from
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FIG. 2. Sketch of the interferometric scheme used to resolve the gravitationally induced phase shift of single-photons. (a)
Schematic drawing of the complete setup: the photons (orange and blue paths) are used as interfering particles whereas
classical laser light (blue path) is used to stabilize the interferometer by means of an imbalanced MZI in each arm as the angle
of inclination (θ) changes. The laser exciting arm 1 can also be used to calibrate the interferometer to operate at the quadrature
point in horizontal position (θ = 0). (b) Stabilization mechanism: the entire interferometer can be kept at the quadrature
point during rotation —without erasing the gravitational phase information—by means of an imbalanced MZI in each arm.
(c) Phase detection: single photons are coupled into the stabilized interferometer and are used to observe the gravitationally
induced phase shift by measuring the difference in photon counts between the detector in arm 2 and the detectors in arm 3 for
each angle θ. The high frequency modulation provided by the optical switch creates a time-varying gravitational signal in a
low-noise band at the detectors.

external noise, arising from temperature fluctuations
and air currents, by placing it in a vacuum chamber.
In order to reduce coupling to vibrations, the entire
set-up can be placed on an actively stabilized vibration
isolation system. An optical switch (OS), consisting of
an electro-optical modulator (EOM) and a polarizing
beam splitter (PBS), is used to connect the additional
arm to the conventional MZI, directing the photons
either along arm 2 or arm 3 as a function of time.
This technique effectively creates two two-arm MZIs
with different spacings between their arms resulting in
different gravitational potential differences. Therefore a
time-varying signal, modulated at the EOM frequency,
is received at the single-photon detectors (SPD) and
can be extracted by post-selecting data at the frequency
of modulation performed by the EOM. The rotational
degree of freedom (e.g. about arm 1, Fig. 2) is used to
calibrate the interferometer in the horizontal position as
well as creating an angle dependent signal by slowly ro-

tating the interferometer and performing measurements
at fixed positions.

B. Calibration and measurement

To avoid signal fading for different angles in the pres-
ence of noise without extinguishing the gravitational in-
formation in each of the arms, the following strategy may
be applied. The interferometer can be calibrated in the
horizontal position —where gravitational differences are
absent —using a frequency stabilized laser source in arm
1 (Fig. 2). We can operate at the most phase-sensitive
point (quadrature point) of the MZI by adjusting a phase
difference of π2 between arm 1 and arms 2 and 3. To keep
the MZI at this point for all angles and during rotation,
the length of each arm is kept constant by means of an
additional, imbalanced MZI consisting of the correspond-
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ing fiber spool and a short segment of fiber (blue lines in
Fig. 2) together with a frequency stabilized laser source
in each arm. The length of this segment can be cho-
sen to be as short as possible, so that we can assume
the noise to be negligible in the passively isolated, noise
reducing vacuum chamber. This allows to monitor and
thus minimize the noise in the long fiber spool, where the
vacuum environment minimizes common-mode noise for
each of the three additional interferometers. A linewidth
for the stabilizing lasers in the kHz regime is required
for good visibility in these unbalanced MZIs. The in-
terferometer can now be slowly rotated (e.g. about arm
1) to change the gravitational potential difference in a
controlled way. Because of the active stabilization pro-
vided by the imbalanced MZI in each arm, an observer
located at one of the rotated arms will measure a stable
path length during the entire rotation. After fixing the
entire setup at a given angle, single photons —with fre-
quency different from the lasers —are coupled into the
interferometer via the first FBS (Fig. 2c). The single
photons will now experience a different gravitational po-
tential depending on which path they take leading to a
relative phase shift. Single-photon detectors in arms 2
and 3 can be used to resolve this phase difference. The
dynamic EOM-modulation together with the controlled
(static) rotation of the interferometer and the active sta-
bilization preserving the calibration condition, allows us
to measure the gravitationally induced phase shift on the
single photons. In designing this interferometer it is cru-
cial to identify all the physical phenomena that could in-
troduce noise that would swamp the gravitational effect
we wish to observe.

III. NOISE ANALYSIS

A. Effects of the rotation of the Earth

The rotation of the Earth introduces an additional rel-
ative phase-shift (∆φC) between the spools. The cali-
bration of the interferometer in the horizontal position
effectively sets ∆φc between the different arms equal to
zero. However, as θ increases, this difference for arms 2
and 3 with respect to arm 1 constantly changes in ad-
dition to ∆φg. We can estimate this effect by assuming
the velocity of the photon to be constant as seen by an
observer in the laboratory. We can then calculate (see
Appendix A) the resulting phase-shift between the two
outermost arms —represented by spools 1 and 3 in Fig.2
—within the framework of special relativity to be (up to
first order in RΩ

c )

∆φc =

√
1− b2ω2 + v2

z

c2

(
2π∆l

λ
− 2πbRΩ

λc
cosφ·(

cos ξF (ω, α1,3) + sin θ sin ξF ′(ω, α1,3)

))
, (3)

FIG. 3. Spool geometry used to calculate the phase-
corrections due to the rotation of the Earth. The x-axis is
always pointing South, the z-axis is normal to the surface of
the Earth and the y-axis is pointing to the East. The photons
enter the spool in a plane defined by the angle αi, where i is
indexing the corresponding fiber spool.

where b is the radius of the spool, vz is the (average)
light speed along the direction of the cylindrical symme-
try axis of the spool, ∆l ≡ N1l1 − N3l3 ≡ L1 − L3 is
the optical path-length difference and ω is the (average)
angular speed of the light circling around the spool. The
angles φ and θ represent the latitude coordinate of the
lab on Earth and the spool inclination angle, respectively,
as shown in Fig. 3. We define ξ as the angle between the
normal projection of the symmetry axis of the spool(s)
to the surface of the Earth and the unit vector pointing
South. By definition, ξ = 0 defines a vector pointing
South at the location of the lab, whereas ξ = π/2 defines
a vector pointing East. The term linear in ∆l in Eq. (3)
is the usual phase term for standard fiber interferometry,
here multiplied by a factor originating from the rotation
around the spools axis. Because of the expected value
for the gravitational phase (h = 3 m, l = 105 m) we can
calculate a bound on the optical path length difference of
about ∆l ≤ 10−11m. The oscillating term contains two
functions defined by

F (ω, α1,3) := sin

(
ωL1

c
+ α1

)
− sin

(
ωL3

c
+ α3

)
+ sin(α3)− sin(α1) (4)

F ′(ω, α1,3) := cos

(
ωL1

c
+ α1

)
− cos

(
ωL3

c
+ α3

)
+ cos(α3)− cos(α1) , (5)

that describe an effect arising from the special geometry
of the fiber spools. The angles α1 and α3 describe the
planes in which the photon enters the fiber spool at time
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t = 0 in the laboratory frame. From Eq. (3) —which
can be interpreted as a coupling between the rotation of
the Earth and the rotation around the fiber spool —it is
easy to observe, that the amplitude is independent of the
length l (mod 2πb) of the fiber. Using b = 0.2 m, ω ∼ 109

rad s−1, vz ∼ 400 m s−1, λ = 1550 nm and φ = 48.21◦ we
can expect a phase-shift on the order of 0.5 rad. Compar-
ing ∆φc to the gravitationally induced phase shift (Eq.
(1)) by taking the same numbers and the effective re-
fractive index to be N = 1.468 for a fiber of reasonable
length l = 105 m, we expect ∆φg to be approximately
three orders of magnitude smaller. Fortunately, it is rel-
atively easy to align the geometric angles α3 and α1 to
be parallel for all spools. For simplicity we consider from
now on α3 = α1 = 0 without loss of generality. We re-
quire the effect to be independent of the angle between
the fiber spool symmetry axis and the surface normal of
the Earth (e.g. between ’horizontal’ and ’vertical’ posi-
tion in the laboratory), in contrast to the gravitational
effect [21]. This can be done by choosing ξ = nπ (n ∈ Z),
indicating that the axis of rotation between the ’vertical’
and the ’horizontal’ position should be parallel to the
line connecting the cardinal directions West and East.

In this case ∆φc ∝ 2 sin
(
ω
2c∆l

)
cos
(
ω
2c l
)

, where we de-

fined l := L3 + L1. Therefore the oscillating term in Eq.
(3) reduces to

∆φoscc =

√
1− b2ω2 + v2

z

c2
4πbRΩ

λc
cosφ·

sin
( ω

2c
∆l
)

cos
( ω

2c
l
)
, (6)

where the argument in the sine function is periodic with
a period of 4πb. The periodicity together with the ge-
ometry of the model used for calculating Eq. (3) allows
for the interpretation of the sine-term as describing the
plane perpendicular to the fiber symmetry axis, where
the photon leaves the fiber spool. Note that this term
only arises because of the geometry of the fiber spool
and would not be observable in a straight fiber interfer-
ometer. Setting an upper bound for the maximal angular
displacement between the planes of the spools where the
photon can leave by using Eqs. (1) and (6), we obtain a
required stability of about ∆l ∼ 13µrad. With a spool
radius of about 0.2 m this translates to an angular sta-
bility of about 7 mdeg. Though feasible, this is certainly
one of the most challenging parts of the experiment. This
means that in order to not swamp the gravitational ef-
fect by the rotation of the Earth, all of the three possible
input planes (described by the αi) and all of the three
possible output planes (described by ∆l and b) must not
change more than 7 mdeg during rotation from the hori-
zontal —where this effect is not present due to calibration
—to the vertical.

FIG. 4. Theoretical curve for the Wanser thermal noise the-
ory. The root-mean-square amplitude of the phase noise fluc-
tuations in the fibers as a function of frequency, as given in
[22], is shown. The plot represents the expected phase noise
for a fiber interferometer operating at a wavelength of λ =
1550 nm and a total length of 2l = 200 km. The used fiber pa-
rameters are: thermal conductivity κ = 1.37 W mK−1, refrac-
tive index temperature coefficient dn/dT = 9.52× 10−6 K−1,
effective refractive index n = 1.468, coefficient of linear expan-
sion αL = 5× 10−7 K−1, thermal diffusivity D = 0.82× 10−6

m2 s−1, mode-field radius ω0 = 5.2 µm and fiber outer radius
af = 62.5 µm.

B. Internal fiber noise

Another factor that limits the sensitivity and stability
of any fiber interferometer is internal noise originating
from thermal properties of the fiber itself [20, 22–25].
External noise, mainly from temperature fluctuations,
air currents and acoustic noise can be greatly reduced
by housing the fiber-spool inside an evacuated chamber,
shielded additionally from acoustic noise by active vibra-
tion isolating systems. In fact, without this shielding it
has been shown to be impossible to measure a meaning-
ful signal due to signal fading [18]. In most applications
for short-scale fiber interferometry, the shot noise limit
sets a lower bound on the phase-sensitivity of an inter-
ferometer. For large-scale fiber interferometers, intrinsic
thermal noise of the transmissive medium itself can limit
the performance, and must be carefully analysed for the
application at hand. There are several theoretical inves-
tigations attempting to model the observed noise floors
for optical fiber interferometers. The measured power
spectral density (PSD) for typical fibers used in optical
fiber sensing (see e.g. [20, 26]), has a 1/f dependence
in the low frequency regime, which shows good agree-
ment with theories for mechanical dissipation in optical
fibers ([23]). For frequencies over 1 kHz, the PSD curve
shows excellent agreement with another theory for ther-
mal phase noise by Wanser [22]. The PSD has a rapid
cut-off for Fourier frequencies above 100 kHz, indicat-
ing a lower noise contribution in this frequency regime.
The root-mean-square amplitude of phase noise fluctu-
ations depends strongly on the geometry and material
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of the fiber. Using the fiber parameters for Corning’s
standard single mode fiber SMF-28 [26], the noise con-
tribution from intrinsic thermal phase noise for an in-
terferometer with total length 2l = 200 km [27] can be
estimated to be around 10−6 rad Hz−1/2 at 100 kHz ac-
cording to Wanser’s theory (Fig. 4). A better estimation
for this bound can only be given by measuring the crucial
parameters for the fiber actually used in this experiment.
One can see, that the thermal noise contribution can be
tailored by an appropriate choice of signal band-pass fil-
tering at the detectors and proper choice of the mod-
ulation frequency with the OS. Passive stabilization by
noise damping foundations and vacuum environment are
necessary for keeping external noise contributions to a
minimum. This might also reduce the need for an active
stabilization loop for the short fiber segments connecting
the three arms of the interferometer (orange lines in Fig.
2). Active stabilization of the fibers performed by the
imbalanced MZIs in each arm keeps the interferometer
at the desired quadrature, independent of the inclination
angle θ.

C. Polarization and Dispersion

Optical fiber interferometers are also sensitive to polar-
ization effects [28]. The states-of-polarization (SOP) of
the two interferometer arm outputs determine the mix-
ing efficiency at the merging beam splitter, where perfect
polarization overlap occurs for parallel SOPs resulting in
a maximal visibility [29]. The proposed setup relies on
rotation around one of the arms of the MZI, so special
care must be taken to preserve perfect mixing and avoid
polarization drifts and rotations. One possible approach
to overcoming drifts in polarization is to use polarization-
maintaining (PM) fibers. The main disadvantages of us-
ing PM fibers are the much higher transmission losses
(∼ 0.5 dB/(km nm) instead of ∼ 0.18 dB/(km nm)) and
the much higher costs. Therefore it is most practical to
use standard single-mode fibers with an active stabiliza-
tion of the polarization in each arm [29]. The required
quality of this stabilization depends mainly on the cho-
sen frequency of the optical switch.
Because we are aiming for measuring small optical phase
shifts with large scale fiber interferometers, dispersive ef-
fects might also be of great importance. We assume the
single-photon states to have Gaussian spectral amplitude

[30] f(ω) =
(

1
2πσ

)1/4
e−i(ω−ω0)t0− (ω−ω0)2

4σ2 , where σ2 is the
variance of the spectral intensity and ω0 is the central
frequency of the pulse. Allowing for pulses to evolve dif-
ferently in distinct fibers we can rewrite the detection
probability (Eq. (2)) for a conventional MZI as (Ap-
pendix B)

P± ≈
1

2

(
1±

√
2ττ ′

τ2 + τ ′2
e
−

∆φ2
g

4ω2
0(τ2+τ′2) cos(∆φg + φ(t))

)
,

(7)

where τ2 ≡ τ2
0 +∆τ2 and τ0 is the initial temporal width

of the photon [31]. The time-domain broadening is given
by ∆τ := Dml∆λ with Dm representing the dispersion
coefficient (ps/(km nm)), l the length of the fiber (km)
and ∆λ representing the spectral width (nm). The prime
in Eq. (7) indicates the second fiber with different mate-
rial coefficient. The Gaussian pre-factor depends on the
ratio between path difference, represented by the grav-
itational phase shift, and pulse length represented by
the broadening of the initial pulse in the time domain.
It can be shown by using Eq. (7) that the dispersion
broadening results in an effect that is about two orders
of magnitude smaller than the gravitational phase shift
for photons with spectral width achievable in recent ex-
periments [32]. Thus dispersion is not a limiting factor
in the proposed experiment.

D. Attenuation and integration time

While the interferometer’s path lengths should be as
large as possible to increase the relative gravitational
phase difference between the arms, longer optical fiber
paths also introduce more noise and reduce transmis-
sion, thus increasing the integration time required for
statistically significant measurements. In this setup, the
gravitational phase can be resolved by means of a differ-
ence in count rates as a function of θ and the modulation
frequency of the optical switch. To determine an upper
bound on the required integration time, we assume the
single photon source to possess photon statistics follow-
ing a Poisson distribution at the detectors after passing
through the fibers. In order to be visible over the Poisso-
nian noise, the difference in photon counts due to gravity
should be at least

√
n̄i, where n̄i is the average number of

photons registered by the ith detector per time t. Because
the optical switch directs the photons either along arm
2 or arm 3, the set-up reduces to a conventional Mach-
Zehnder interferometer, where the difference in gravita-
tional potential can be seen as phase change modulated
by a phase-shifter. The amplitude in this model is pro-
portional to the potential difference between arms 2 and
3 and the modulation frequency is given by the one of
the EOM. The integration time of the detectors can thus
be estimated by (see Appendix C)

t ≥ N̄aηP + nd(
N̄aη(A− P )

)2 , (8)

where N̄ is the number of photons per unit time
provided by the single photon source, η is the quantum
efficiency of the detector, nd is the dark count rate and

a = 10(− αl
104−Σiαi) is the overall attenuation factor of

the interferometer with α the attenuation coefficient
of the optical fiber, l the length (m) of the horizontal
arms of the MZI and the αi are the various attenua-
tion coefficients of the fiber optic components used in
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the interferometer. The detection probability for the
detector in question at an angle θ at the quadrature
point is denoted by P . The detection probability for
the ‘horizontal’position (θ = 0), where gravity has
no effect, is denoted by A. Because of the large area
needed to observe even a small gravitational phase
shift, it is desirable to work at a wavelength where the
optical fibers have high transmission. For standard
single-mode fibers this is usually around a wavelength of
1550 nm. To achieve high quantum efficiencies and low
dark count rates for photon detection at this particular
wavelength, superconducting nanowire single-photon
detectors (SNSPDs) may be used. The dark count rate
for SNSPDs have been shown to be as low as 1 Hz for
detectors with quantum efficiency > 90% [33]. Because
the integration time is inversely proportional to N̄ , a
single-photon source with high brightness is beneficial.
Spontaneous parametric down conversion (SPDC) in
non-linear crystals is one of the most versatile and
reliable technologies to produce single-photon states
of light. The last 20 years have witnessed significant
technological improvements in the performance of such
sources, which can now reach brightnesses of up to 105

pairs/(s GHz) per mW of pump with typical bandwidths
of the order of 100 GHz [32]. By inserting the non-linear
crystal in an optical cavity, it is possible to narrow
the bandwidth up to 10-100 MHz, while keeping high
brightness, of the order of 104 pairs/(s MHz) per mW
of pump power [34]. Typical pump powers that ensure
real single-photon regimes range between 1 and 10 mW.
Based on these and Eq. (8), we expect a maximal
required integration time for θ = π

2 of about two days.

IV. CONCLUSION AND OUTLOOK

Optical fiber interferometry is a promising technique
for table-top experiments aimed at measuring gravita-
tionally induced phase shifts on single photons. Here we
have presented a scheme for overcoming the static nature
of the gravitational interaction by exploiting a modified
Mach-Zehnder interferometer. An additional arm allows
us to create a time-varying signal controlled by an optical
switch operating at a high frequency chosen to minimize
internal fiber noise. By rotating the setup around one
of the arms, it is possible to calibrate the interferometer
in the horizontal orientation to its most sensitive point
of operation. We have shown that by adding an unbal-
anced MZI in each arm of the MZI, the calibration con-
dition can be preserved during rotation. Single photons
injected into the interferometer will therefore be subject
to only a gravitational potential difference, depending on
the path taken. Due to the fiber spool geometry, the
rotation of the Earth can manifest itself as a phase shift
large enough to swamp the gravitational phase shift. It is
therefore necessary to keep a stringent geometric relation
between the various fiber entrance and exit planes during

rotation to successfully perform the experiment. Polar-
ization drifts, especially during rotation of the setup, can
be avoided by preserving the SOP in each interferometer
using an active feedback loop. A successful measurement
of the gravitationally induced phase shift would probe
the equivalence between the energy of the photon and its
effective gravitational mass. While extremely challeng-
ing, this experiment has the potential to open the path
for table-top experiments capable of testing the interplay
between general relativity and quantum mechanics.
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Appendix A: Derivation of the phase shift due to
the rotation of the Earth

We now give the derivation for the phase shift arising
from the rotation of the Earth (Eq. (3)) to first order in

ε ≡ RΩ

c
. (A1)

We consider the photon in a dielectric medium to be a
point particle moving with velocity v < c. The motion of
the photon in a fiber spool is, first, calculated in an earth-
centered inertial (ECI) coordinate system. The proper
time in this frame is denoted by t, and we place the lab
initially at the center of the Earth. The Euclidean co-
ordinates of a photon in its spiral motion around the
symmetry axis of the spool, located at a distance h away
from the origin, can be described by the trajectory

~l(t) =

b cosα(t)
b sinα(t)
vzt+ h

 , (A2)

where b is the radius of the spool, α(t) is the angle from a
predefined plane (Fig. 3) and vz is the velocity along the
symmetry axis of the spool. We now rotate the spool by
an angle θ′ about the y-axis, as described by the matrix
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Ry(θ′) =

 cos θ′ 0 sin θ′

0 1 0
− sin θ′ 0 cos θ′

 , (A3)

where θ′ := π/2−θ. This is followed by a rotation about
the z-axis, which determines the direction of the symme-
try axis of the spool, using the rotation matrix

Rz(ξ) =

cos ξ − sin ξ 0
sin ξ cos ξ 0

0 0 1

 . (A4)

We continue by shifting the trajectory to the surface of
the Earth with radius R by an operator whose action is
defined by

S(R)

ab
c

 =

 a
b

c+R

 . (A5)

To account for the latitude coordinate we rotate again
about the y-axis using

Ry(φ′) =

 cosφ′ 0 sinφ′

0 1 0
− sinφ′ 0 cosφ′

 , (A6)

where the latitude coordinate is given by φ′ = π/2 − φ.
The rotation of the Earth with an angular speed of Ω
about the z-axis of the ECI frame by an angle ψ(t) :=
Ωt+ ψ0 is described by

Rz(ψ(t)) =

cosψ(t) − sinψ(t) 0
sinψ(t) cosψ(t) 0

0 0 1

 . (A7)

Applying these operators to the vector defined in Eq.
(A2) results in a world line of the photon given by

x(t) =
(
ct, Rz(ψ(t))Ry(φ′)S(R)Rz(ξ)Ry(θ′)~l(t)

)
:=
(
ct,D(t)~l(t)

)
(A8)

with tangent

d

dt
x(t) =: ẋ(t) =

(
c,
dD(t)

dt
~l(t) +D(t)

d~l(t)

dt

)
(A9)

and four velocity

u =
cẋ(t)√
−η(ẋ, ẋ)

, (A10)

where the Minkowski metric diag(−1, 1, 1, 1) is used. Re-
call that the photon is considered to be a point particle
moving with velocity v < c, we can therefore calculate
the amount of proper time, say τ spent in the spool:

τ =

∫ T

0

dτ

dt
dt =

1

c

∫ T

0

√
−η(ẋ, ẋ)dt (A11)

assuming that the photon enters the fiber at t = 0 and
exits at t = T . We have also used the relation −c2 =

η(u, u) =
(
dt
dτ

)2
η(ẋ(t), ẋ(t)) = γ2η(ẋ(t), ẋ(t)), where γ

denotes the Lorentz factor. In order to calculate (A11)
we require the photon velocity to be constant as seen by
an observer in the lab. Denoting the speed of the photon
in the lab by v and the four velocity of the lab by uL we
get

η(u, uL) = −c2γ(v) = − c2√
1− v2

c2

, (A12)

or equivalently

v2

c2
= 1− c4

η2(u, uL)
. (A13)

Letting tL be the lab-proper time, we can use (A8) to-
gether with b = vz = h = 0 to find

tL =
(

1 +O(ε2)
)
t+ C (A14)

for some constant C. Hence a constant velocity with re-
spect to the lab frame is equivalent to the requirement
that η2(u, uL) is time-independent to order ε:

d

dt
η2(u, uL) = 0 . (A15)

The four velocity of the lab is given by

uL =
cẋL(t)√
−η(ẋL, ẋL)

(A16)

and can be calculated using (A8) with b = vz = h = 0.
Solving Eq. (A15) by using (A10) and (A16) results in
an ordinary differential equation (ODE) with parameters
for α(t). The solution takes on the form α(t) = α(0) +

ωt+εα1(t)+O
(
ε2
)

[35] where ω is the (average) angular

speed of light circling around the spool. After inserting
α(t) to order ε in Eq. (A15)) we get

α̇1 =− b2ω2 + v2
z

cb
sinφ′

(
cos ξ cos(ωt+ α0)+

cos θ′ sin ξ(1− sin(ωt+ α0))
)
, (A17)
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where α(0) ≡ α0 and the approximation cos(α(t)) =
cos(ωt + α(0)) + O (ε) were used. We can now calculate
η(ẋ, ẋ) by inserting Eq. (A17) and expand the square
root in Eq. (A11) to first order after factoring out the

constant term
√

1− b2ω2+v2
z

c2 . The result of this expan-

sion is

τ =

√
1− b2ω2 + v2

z

c2

(
T − bRΩ

c2
sinφ′·

(
cos ξ sin(ωT + α0) + cos θ′ sin ξ cos(ωT + α0)

))
,

(A18)

where T = liNi
c with i representing the associated spool

with length l and group refractive index N in the in-
terferometer. The phase difference between arms 1 and
3 of our setup after multiplying by the optical angular
frequency is given by

∆φc =
2πc

λ
∆τ :=

2πc

λ

(
τ1 − τ3

)
=

√
1− b2ω2 + v2

z

c2

(
2π∆l

λ
− 2πbRΩ

λc
cosφ·(

cos ξF (ω, α1,3) + sin θ sin ξF ′(ω, α1,3)

))
,

(A19)

which is equation (3) in Sec. (III).

We finish this appendix with the following calcu-
lation, which reduces somewhat the computational
complexity of the above. Let us introduce the following
notation

• ~n is a Euclidean unit-length vector along the axis
of rotation of the Earth;

• ~̀ is a Euclidean unit-length vector directed from
the center of the Earth to the geometric center of
the first coil in the spool;

• ~i is a Euclidean unit-length vector along the axis of
the spool;

• ~j(t) is a Euclidean unit-length vector orthogonal to
~i so that, in Euclidean coordinates in the lab, the
position of the photon is

tvz~i+ b~j(t) ,

and where t 7→ ~j(t) describes a motion on a flat
circle with velocity α̇(t).

• ~k(t) is a Euclidean unit-length vector along

d(~j(t))/dt, thus ~i, ~j(t) and ~k(t) are all unit length
and pairwise orthogonal, with

d

dt
~j(t) = α̇(t)~k(t) .

• U(t) denotes a matrix of rotation by angle Ωt
around the axis of the earth. We then have

d

dt
U(t) = ΩU(t)r ,

where Ω is the rotation velocity and r = (rij) is a
time-independent matrix with entries

rij = εijkn
k .

It follows that r acts on vectors as a vector product:

r(~y) ≡ r~y = ~y × ~n .

We will only keep track of the leading order corrections in
the calculations that follow. Note that there occur some
subleading corrections which are O(ε) but not of order
ε2. In order to isolate the leading order terms, we note
that in the new variables the world-line of the photon is

x(t) =
(
ct, U(t)(R~̀+ vzt~i+ b~j(t))

)
,

with tangent

ẋ(t) =
(
c, U(t)

(
Ωr(R~̀+ vzt~i+ b~j(t)) + vz~i+ bα̇~k(t)

))
=
(
c, cU(t)

(
εr(~̀+

vzt

R
~i+

b

R
~j(t)) +

vz
c
~i+

bα̇

c
~k(t)

))
≈
(
c, cU(t)

(
ε~̀× ~n+

vz
c
~i+

bα̇

c
~k(t)

))
, (A20)

and four velocity u = cẋ/
√
−η(ẋ, ẋ). Setting

α(t) = ωt+ εα1(t) ,

and denoting by “·”the Euclidean scalar product and by
“| |”the Euclidean norm, we have

−η(ẋ, ẋ)/c2 ≈ 1−
∣∣ε~̀× ~n+

vz
c
~i+

bα̇

c
~k(t)

∣∣2
≈ 1− v2

z

c2
− (bα̇)2

c2

− 2ε (~̀× ~n) ·
(vz
c
~i+

bα̇

c
~k(t)

)
≈ 1− v2

z

c2
− (bω)2

c2
− 2

b2εωα̇1

c2

− 2ε (~̀× ~n) ·
(vz
c
~i+

bω

c
~k(t)

)
,

√
−η(ẋ, ẋ)/c ≈

√
1− v2

z

c2
− (bω)2

c2

(
1

− ε
b2ωα̇1

c2 + (~̀× ~n) ·
(
vz
c
~i+ bω

c
~k(t)

)
1− v2

z

c2 −
(bω)2

c2

)
.

(A21)
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Set

γ−1
0 :=

√
1− v2

z

c2
− b2ω2

c2
=:
√

1− β2
0 ,

a1 :=
vz
c

(~̀× ~n) ·~i ,

a2 cos(ωt+ α0) ≡ a2ψ(t) :=
bω

c
(~̀× ~n) · ~k(t) . (A22)

Using these variables, we can write

√
−η(ẋ, ẋ)/c ≈ γ−1

0

(
1− εγ2

0

(b2ω
c2

α̇1 + a1 + a2ψ
))

c√
−η(ẋ, ẋ)

≈ γ0

(
1 + εγ2

0

(b2ω
c2

α̇1 + a1 + a2ψ
))
.

(A23)

Next, the world-line xL of the lab is obtained by setting
b = vz = 0 above:

xL(t) =
(
ct, RU(t)~̀

)
,

with tangent

ẋL(t) =
(
c,RΩU(t)r~̀

)
=
(
c, cεU(t)(~̀× ~n)

)
, (A24)

and four velocity uL = cẋL/
√
−η(ẋL, ẋL). We have

−η(ẋL, ẋL) = c2 − c2
∣∣ε~̀× ~n∣∣2 ≈ c2 .

To determine the relative velocity of the photon with
respect to the lab we calculate

−η(ẋ, ẋL)/c2 ≈ 1− ε(~̀× ~n) ·
(vz
c
~i+

bω

c
~k
)

≈ 1− ε(a1 + a2ψ) , (A25)

− η(ẋ, ẋL)√
η(ẋ, ẋ)η(ẋL, ẋL)

≈ γ0

(
1 + εγ2

0

(b2ω
c2

α̇1+

β2
0(a1 + a2ψ)

))
. (A26)

A constant velocity of the photon with respect to the lab
means that

0 =
d

dt

(
− η(ẋ, ẋL)√

η(ẋ, ẋ)η(ẋL, ẋL)

)
≈ d

dt

(b2ω
c2

α̇1 +β2
0a2ψ)

)
.

(A27)
Integrating this equation once one obtains (A17) at the
current order of approximation, leading again to (A18).

Appendix B: Derivation of the detection probability
for dispersive media

The commutation relation for the continuous-mode
creation and annihilation operators for modes i and j
is given by [30]

[âi(ω), âj(ω
′)†] = δijδ(ω − ω′)1, (B1)

where 1 is the identity operator. A single photon entering
the first BS (Fig. 1) is split into a coherent superposition
between arm 1 and arms 2 or 3 and recombines at the
merging BS. Assigning the annihilation operators for the
inputs and outputs of the merging BS as defined in Fig.
5 we get the relation [36]

FIG. 5. Representation of a symmetric lossless beam splitter
showing the annihilation operators associated with the input
and output fields.

â4(ω) = T â1(ω) +Râ2(ω) (B2)

where R and T are the reflection and transmission co-
efficients. The spectral width of the wave function is
assumed to be small, such that the properties of the BS
can be assumed to be independent of frequency. We can
calculate the mean photon number in output-mode 4 for
an arbitrary input state |χ〉 by [30]

〈n̂4〉 =

∫
dtf4(t) (B3)

where f4(t) ≡ 〈χ| â†4(t)â4(t) |χ〉 ≡ 〈â†4(t)â4(t)〉 denotes
the mean photon flux. The Fourier-transformed opera-

tors â4(t) and â†4(t) are defined by

â(t) :=
1√
2π

∫ ∞
−∞

dωâ(ω)e−iωt (B4)

â(t)† :=
1√
2π

∫ ∞
−∞

dωâ†(ω)eiωt. (B5)

Inserting Eq. (B2) into Eq. (B4) gives

â4(t) = T â1(t) +Râ2(t). (B6)

The flux operator is thus given by
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â†4(t)â4(t) =
(
R∗â†2(t) + T ∗â†1(t)

)(
Râ2(t) + T â1(t)

)
=|R|2â†2(t)â2(t) + |T |2â†1(t)â1(t)

+R∗T â†2(t)â1(t) + T ∗Râ†1(t)â2(t), (B7)

where an asterix (∗) denotes the complex conjugate of R
and T. The input state is —due to the action of the first
BS —entangled and given by

|χ〉 = R |1f0〉+ T |01f ′〉 (B8)

which is normalized by the condition |R|2 + |T |2 = 1.
The states |1f 〉 and |1f ′〉 are defined by

|1f 〉 = â†1f |0〉 =

∫
dtf(t)â†1(t) |0〉 (B9)

|1f ′〉 = â†1f ′ |0〉 =

∫
dtf ′(t)â†1(t) |0〉 , (B10)

where |0〉 denotes the vacuum state and f(t) and f ′(t)
denote the shape of the wave packet in the time domain
for the different fibers used as arms in the MZI. In general
f(t) 6= f ′(t) for different fibers although the input single-
photon state into the interferometer is the same. For a
single mode we get from Eqs. (B1), (B4) and (B5) the
commutation relation [â(t), â(t′)†] = δ(t − t′)1 that can
be used to calculate the mean photon flux for equally
transmissive arms

f4(t) = |R|2|T |2|f(t) + f ′(t)|2. (B11)

We assume a Gaussian spectral amplitude for the input
single-photon state

f(ω) =

(
1

2πσ

)1/4

e−i(ω−ω0)t0− (ω−ω0)2

4σ2 . (B12)

Fourier transformation gives

f(z = 0, t) =

(
2σ2

π

)1/4

eiω0te−σ
2(t−t0)2

, (B13)

which describes the shape of the pulse in the time domain
at the location of the first beam splitter and where t0
is the time at which the peak of the pulse passes the
coordinate origin z = 0 [30]. The variance of the intensity
given by |f(z = 0, t)|2 is τ0 ≡ 1

2σ . To follow its evolution
for z 6= 0 we can write [37]

f(z, t) =
1√
2π

∫ ∞
−∞

f(ω)ei(ωt−k(ω)z+φ(t))dω , (B14)

where k(ω) denotes the propagation constant and φ(t)
denotes a possible noise term at position z and time
t. Expanding the propagation constant to second order
around ω0

k(ω) =k(ω0) +
dk(ω)

dω0
(ω − ω0)

+
1

2

d2k(ω)

dω2
0

(ω − ω0)2 +O
(
ω3
)

=k0 +
1

vg
(ω − ω0) +

1

2
ρ(ω − ω0)2 +O

(
ω3
)
,

(B15)

where d
dω0
≡ d

dω

∣∣∣
ω=ω0

, vg denotes the group velocity of

the wave packet and ρ ≡ d2k(ω)
dω2

∣∣∣
ω=ω0

. Inserting this ex-

pansion and the function for the spectral amplitude into
Eq. (B14) gives

f(z, t) =

(
1

2πτ2(z)

)1/4

e
−

(
t− z

vg
−t0

)2

4τ2(z) eiΦ(z,t), (B16)

where

τ2(z) = τ2
0

(
1 +

ρ2z2

4τ2
0

)
:= τ2

0 + ∆τ2 (B17)

describes the temporal width (measured as square root of
the variance) of the photon at a distance z away from the
origin. The dispersion coefficient as given in the standard
form of the temporal broadening for an arbitrary spectral
shape ∆τ = Dml∆λ, is related to the Gaussian shape
used in this derivation via Dm = − 2πcρ

λ2 106 (ps/km· nm).
The quantity

Φ(z, t) =ω0t− k0z + φ(t)− 1

2
tan−1

(
ρz

2τ2
0

)

+
ρz
(
t− z

vg
− t0

)
8τ2

0 τ
2(z)

≡ ω0t− k0z + φ(t) + Ξ , (B18)

represents the phase, where the term inversely propor-
tional to τ(z)2 leads to the phenomenon of chirping [37].
Using Eq. (B3), inserting Eq. (B16) into Eq. (B11) and
neglecting Ξ in the phase term due to its negligible con-
tribution as compared to the gravitational phase results
for different broadening in the two noise-reduced fibers
in Eq. (7) of Sec. (III)

P± ≈
1

2

(
1±

√
2ττ ′

τ2 + τ ′2
e
−

∆φ2
g

4ω2
0(τ2+τ′2) cos(∆φg + φ(t))

)
,

(B19)
where ∆φg ≡ ∆l

vg
in this context.
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Appendix C: Derivation for the estimated
integration time

The single-photon source is assumed to produce on av-
erage N̄ photons per unit time interval. We consider
symmetrical beam splitters where a single photon can be
found in both output modes with equal probability. The
arms of the MZI are assumed to be equally transmissive
and the attenuation coefficient can be calculated from
Σiαi + α l = 10 log10

Pin
Pout

with l in km and Pin and Pout
representing the input and output power, respectively.
After the merging BS there are now N̄ · a photons de-
tectable per unit time. The detector has a probability
of P to observe a photon with a quantum efficiency of
η and a dark count rate of nd. Thus the total number
of photons expected to produce a signal at the detector
after a time t is given by

n̄(t) ≡
(
N̄ a η P + nd

)
t. (C1)

To estimate the integration time, we assume that we are
Poisson noise limited, resulting in the inequality

√
n̄(t) ≤ n̄sig(t). (C2)

If we denote the detection probability in the absence
of gravitational effects by A, we can calculate the ex-
pected number of photons indicating the gravitational
phase shift within a time interval t by n̄sig(t) =(
N̄ a η (A− P )

)
t. Solving Eq. (C2) for t results in an es-

timated time after which the gravitational effect is visible
over Poissonian noise given by

t ≥ N̄aηP + nd(
N̄aη(A− P )

)2 . (C3)

In order to give a quantitative number for t we denote
the single-photon detector at the end of arm 2 by D1
and the detectors at the end of arm 3 by D2 and D3
respectively. Because of the optical switch —effectively
creating two 2-arm MZIs —and the interferometer being
calibrated to the quadrature point in the horizontal ori-
entation, the probability of detecting a photon in either
detector depends on the arms composing the MZI at a
given time. In particular, if the noise is suppressed with
the methods described in the main text, the detection
probability for D1 is 1/2 (arms 1 and 2) or 1/4 (arms 1
and 3). Similarly the probability of detecting a photon
in D2 or D3 is 1/4 if arm 2 is open and 3/8 if arm 2
is closed. The integration time is therefore estimated by
using A=1/4 in order to get a lower bound. To calculate
P we can use Eq. (2) with 1/2 replaced by 1/4 for the
3-arm MZI, ∆φg as given by Eq. (1), φ(t) = π/2 to ac-
count for the noise suppressed quadrature point, l = 105

m, h = 1 m N = 1.468 and λ = 1550nm. Using N̄ = 106

s−1, α = 17 dB km−1, Σiαi = 0.5 dB, η = 0.9 and nd = 1

s−1 we can calculate the estimated time (Eq. (8)) for the
gravitational effect to be visible over Poissonian noise to
be almost 2 days. For other inclination angles the in-
tegration time is substantially longer, e.g. for θ = π/2
and equal values for the other parameters the integration
time is almost 4 days.
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