We analyse the effect of post-Newtonian gravitational fields on propagation of light in a cylindrical waveguide in both a straight configuration and a spool configuration. We derive an equation for the dependence of the wave vector upon the vertical location of the waveguide. It is shown that the gravitational field produces a small shift in the wave vector, which we determine, while the spooling creates additional modes which could perhaps be measurable in future accurate experiments.
View full text: here.
Classical and Quantum Gravity 35/24 (November 2018).